Skip to main content Skip to navigation

FRAME Research

Allele-specific detection methods for QoI fungicide resistant Erysiphe necator in vineyards

 

Fungicide Resistance Background and Mechanisms of RMiles, T.D., Neill, T.M., Colle, M., Warneke, B, Robinson, G., Sterigiopoulus, I. and Mahaffee, W.F.2020. Allele-specific detection methods for QoI fungicide resistant Erysiphe necator in vineyards. Plant Disease. In press

Abstract

Grapevine powdery mildew (GPM), caused by the fungus Erysiphe necator, is a constant threat to worldwide production of grapes, requiring repeated use of fungicides for management. The frequent fungicide applications have resulted in resistance to commonly used quinone outside inhibitor (QoIs) fungicides and the resistance is associated with single nucleotide polymorphisms (SNPs) in the mitochondrial cytochrome b gene (cytb). In this study, we attempted to detect the most common SNP causing a glycine to alanine substitution at amino acid position 143 (i.e., G143A) in the cytb protein, to track this resistance using allele-specific TaqMan probe- and digital droplet PCR-based assays. Specificity and sensitivity of these assays showed that these two assays could discriminate SNPs and were effective on mixed samples. These diagnostic assays were implemented to survey E. necator samples collected from leaf and air samples from California and Oregon grape growing regions. Sequencing of PCR amplicons and phenotyping of isolates also revealed that these assays accurately detected each allele (100% agreement) and there was an absolute agreement between the presence/absence of the G143A mutation and resistance to QoIs in the E. necator sampled. These results indicate that the developed diagnostic tools will help growers make informed decisions on fungicide selections and applications, which in turn, will facilitate GPM disease management and improve grape production systems.